Controlling Nanoparticles Formation in Molten Metallic Bilayers by Pulsed-Laser Interference Heating

نویسندگان

  • M. Khenner
  • S. Yadavali
  • R. Kalyanaraman
چکیده

The impacts of the two-beam interference heating on the number of core-shell and embedded nanoparticles and on nanostructure coarsening are studied numerically based on the non-linear dynamical model for dewetting of the pulsed-laser irradiated, thin (< 20 nm) metallic bilayers. The model incorporates thermocapillary forces and disjoining pressures, and assumes dewetting from the optically transparent substrate atop of the reflective support layer, which results in the complicated dependence of light reflectivity and absorption on the thicknesses of the layers. Stabilizing thermocapillary effect is due to the local thickness-dependent, steadystate temperature profile in the liquid, which is derived based on the mean substrate temperature estimated from the elaborate thermal model of transient heating and melting/freezing. Linear stability analysis of the model equations set for Ag/Co bilayer predicts the dewetting length scales in the qualitative agreement with experiment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Direct measurements of heating by electromagnetically trapped gold nanoparticles on supported lipid bilayers.

Absorption of electromagnetic irradiation results in significant heating of metallic nanoparticles, an effect which can be advantageously used in biomedical contexts. Also, metallic nanoparticles are presently finding widespread use as handles, contacts, or markers in nanometer scale systems, and for these purposes it is essential that the temperature increase associated with electromagnetic ir...

متن کامل

Plasmonic Nanocages as Photothermal Transducers for Nanobubble Cancer Therapy

Plasmonics is emerging from among the most promising means for generating and controlling thermal energy at the nanoscale. In this approach, metallic nanoparticles are laser heated at plasmon resonant wavelengths that depend on the size, shape and properties of the particles. Key attributes of this method include remote optical activation, nanoscale resolution and efficient photothermal transdu...

متن کامل

Measurements of extreme orientation-dependent temperature increase around an irradiated gold nanorod

When irradiated at its resonance frequency, a metallic nanoparticle efficiently converts the absorbed energy into heat which is locally dissipated. This effect can be used in photothermal treatments, e.g., of cancer cells. However, to fully exploit the functionality of metallic nanoparticles as nanoscopic heat transducers, it is essential to know how the photothermal efficiency depends on param...

متن کامل

Porosity Formation and Prevention in Pulsed Laser Welding

Porosity has been frequently observed in solidified, deep penetration pulsed laser welds. Porosity is detrimental to weld quality. Our previous study shows that porosity formation in laser welding is associated with the weld pool dynamics, keyhole collapse, and solidification processes. The objective of this paper is to use mathematical models to systematically investigate the transport phenome...

متن کامل

Longitudinal Magneto-Optical Kerr Effect in Ce:YIG Thin Films Incorporating Gold Nanoparticles

We report an experimental study on optical and magneto-optical properties of Cesubstituted yttrium iron garnet thin films incorporating gold nanoparticles. Au nanoparticles were formed by heating Au thin film on cubic quartz and garnet substrate in vacuum chamber and a Ce:YIG layer was deposited on them by the aid of Pulsed laser deposition method. A large enhancement of the longitudinal Kerr e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012